统计中的 Bootstrap 方法是指什么
1个回答
推荐于2016-07-14
展开全部
比如现在有一个分布F...
1. Bootstrap: 如果我无法知道F的确切分布,手上仅有一组从F中iid抽样的样本(X_1, ..., X_n),我想检验“F的均值是否为0”。看起来这个不可能,因为我只有一个\bar{X}的点估计,而并不知道\bar{X}的分布。Bootstrap的魔术是现在我把(X_1, ..., X_n)这个样本当做总体,从中(有放回地)重新抽样,重抽样样本大小仍为n,那么每一次重抽样就可以得到一个“样本均值”,不断地重抽样我就得到了一个\bar{X}的“分布”。这样接下来我就可以构造confidence interval并做检验了。
虽然实践中bootstrap的重抽样步骤都是用Monte Carlo方法来模拟重抽样样本统计量的分布,但是严格地说这个分布原则上可以精确计算。而如果待估统计量比较简单,bootstrap的结果有时甚至可以直接用(X_1, ..., X_n)的某种统计量表示出来,从而并不需要真正地“重抽样
1. Bootstrap: 如果我无法知道F的确切分布,手上仅有一组从F中iid抽样的样本(X_1, ..., X_n),我想检验“F的均值是否为0”。看起来这个不可能,因为我只有一个\bar{X}的点估计,而并不知道\bar{X}的分布。Bootstrap的魔术是现在我把(X_1, ..., X_n)这个样本当做总体,从中(有放回地)重新抽样,重抽样样本大小仍为n,那么每一次重抽样就可以得到一个“样本均值”,不断地重抽样我就得到了一个\bar{X}的“分布”。这样接下来我就可以构造confidence interval并做检验了。
虽然实践中bootstrap的重抽样步骤都是用Monte Carlo方法来模拟重抽样样本统计量的分布,但是严格地说这个分布原则上可以精确计算。而如果待估统计量比较简单,bootstrap的结果有时甚至可以直接用(X_1, ..., X_n)的某种统计量表示出来,从而并不需要真正地“重抽样
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询