展开全部
解,设A的对角矩阵为B,那么,A=Eij(k1)*……*Eij(km)*B*Eij(r1)*……*Eij(rn).其中Eij(ki)Eij(ri)皆为初等矩阵,把i行(列)的ki(ri)倍加到第j行(列)
A^-1=[Eij(k1)*……*Eij(km)*B*Eij(r1)*……*Eij(rn)]^-1=Eij(rn)^-1*……*Eij(r1)^-1*B^-1*Eij(km)^-1*……*Eij(k1)^-1=Eij(-rn)*……*Eij(-r1)*B^-1*Eij(-km)*……*Eij(-k1).其中Eij(-ki)Eij(-ri)皆为初等矩阵,所以A^-1的对角矩阵为B^-1,所以A的逆矩阵与其对角矩阵相似。
A^-1=[Eij(k1)*……*Eij(km)*B*Eij(r1)*……*Eij(rn)]^-1=Eij(rn)^-1*……*Eij(r1)^-1*B^-1*Eij(km)^-1*……*Eij(k1)^-1=Eij(-rn)*……*Eij(-r1)*B^-1*Eij(-km)*……*Eij(-k1).其中Eij(-ki)Eij(-ri)皆为初等矩阵,所以A^-1的对角矩阵为B^-1,所以A的逆矩阵与其对角矩阵相似。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询