无穷级数∝∑n=1 cosn∏/√(n∧2+n)为何是条件收敛

 我来答
kent0607
高粉答主

2015-12-19 · 关注我不会让你失望
知道大有可为答主
回答量:6.2万
采纳率:77%
帮助的人:7075万
展开全部
  无穷级数 ∑(n≥1)[cosnπ/√(n²+n)] 的条件收敛如下判别:
  1)用 Dirihlet 判别法判别该级数是收敛的;
  2)由于
   |cosnπ/√(n²+n)| ≥cos²nπ/√(n²+n)
  = (1/2)[(1+cos2nπ)/√(n²+n)]
  = (1/2)[1/√(n²+n)] +[cos2nπ/√(n²+n)],
而 Σ[1/√(n²+n)] 发散,Σ[cos2nπ/√(n²+n)] 收敛,因而 Σ[cos²nπ/√(n²+n)] 发散,据比较判别法,……。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式