
已知a=³√4+³√2+³√1,求3/a+3/a²+1/a³的值 20
1个回答
展开全部
a=³√4+³√2+³√1
即A=4^(1/3)+2^(1/3)+1=(2^(1/3))^2+2^(1/3)+1
所以A(2^(1/3)-1)=(2^(1/3))^3-1^3=2-1=1
所以 1/A=2^(1/3)-1
1/A^2=(2^(1/3)-1)^2=(2^(1/3))^2-2(2^(1/3))+1
1/A^3=(2^(1/3))^3-3*(2^(1/3))^2+3(2^(1/3))-1
所以3/a+3/a²+1/a³=3(2^(1/3)-1)+3((2^(1/3))^2-2(2^(1/3))+1)+(2^(1/3))^3-3*(2^(1/3))^2+3(2^(1/3))-1
=-3+3+2-1=1
即A=4^(1/3)+2^(1/3)+1=(2^(1/3))^2+2^(1/3)+1
所以A(2^(1/3)-1)=(2^(1/3))^3-1^3=2-1=1
所以 1/A=2^(1/3)-1
1/A^2=(2^(1/3)-1)^2=(2^(1/3))^2-2(2^(1/3))+1
1/A^3=(2^(1/3))^3-3*(2^(1/3))^2+3(2^(1/3))-1
所以3/a+3/a²+1/a³=3(2^(1/3)-1)+3((2^(1/3))^2-2(2^(1/3))+1)+(2^(1/3))^3-3*(2^(1/3))^2+3(2^(1/3))-1
=-3+3+2-1=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询