高一数学,三角函数问题,高手请进!!!

设k是4的倍数加1的自然数,且coskx=f(cosx),证明sinkx=f(sinx)... 设k是4的倍数加1的自然数,且coskx=f(cosx),证明sinkx=f(sinx) 展开
370116
高赞答主

2010-11-27 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
因为coskx=f(cosx)
f(sinx)=f[cos(-π/2+x)]=cos(-kπ/2+kx)
又因为k是4的倍数加1的自然数即
k=4t+1 (t为非负整数)
所以f(sinx)=cos(-kπ/2+kx)=cos(-2tπ-π/2+kx
=cos(-π/2+kx)=sinkx
得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式