帮忙看下这道题
1个回答
展开全部
郭敦顒回答:
16,已知函数f(x)=(√3)sin[(π/2)x+π/3]-sin[(π/2)x+(5/6)π],
(Ⅰ)设G(x)=(√3)sin[(π/2)x+π/3],
P(x)=-sin[(π/2)x+(5/6)π],
则函数f(x)= G(x)+ P(x)。
当min G(x)=-(√3)时,(π/2)x+π/3=-π/2,x=-5/3,
max G(x)=(√3)时,(π/2)x+π/3=π/2,x=1/3;
minP(x)=-1时,(π/2)x+(5/6)π=π/2,x=-2/3,
maxP(x)=1时,(π/2)x+(5/6)π=-π/2,x=-8/3。
当minP(x)=-1,(π/2)x+(5/6)π=π/2,x=-2/3时,
G(x)=(√3)sin[(π/2)x+π/3]=0;
当maxP(x)=1,(π/2)x+(5/6)π=-π/2,x=-8/3时,
G(x)=(√3)sin[(π/2)x+π/3]=3/2。
当min G(x)=-(√3),(π/2)x+π/3=-π/2,x=-5/3时,
P(x)=-sin[(π/2)x+(5/6)π]=0;
当max G(x)=(√3),(π/2)x+π/3=π/2,x=1/3时;
P(x)=-sin[(π/2)x+(5/6)π]=0
当x=-2/3时,G(x)=(√3)sin[(π/2)x+π/3]=0
P(x)=-sin[(π/2)x+(5/6)π]=-1,
综上有,
当x的区间为[-5/3,1/3]时,
函数f(x)= G(x)+ P(x)递增,递增区间为[-√3,√3]。
(Ⅱ)f(a+5/3)=-1,求sin[(π/2)a+π/3]的值,
函数f(x)= G(x)+ P(x)=-1,
由上得x=-2/3,
∵a+5/3=x=-2/3,
∴a=-7/3,
sin[(π/2)a+π/3]= sin(-5π/6)=-1/2。
16,已知函数f(x)=(√3)sin[(π/2)x+π/3]-sin[(π/2)x+(5/6)π],
(Ⅰ)设G(x)=(√3)sin[(π/2)x+π/3],
P(x)=-sin[(π/2)x+(5/6)π],
则函数f(x)= G(x)+ P(x)。
当min G(x)=-(√3)时,(π/2)x+π/3=-π/2,x=-5/3,
max G(x)=(√3)时,(π/2)x+π/3=π/2,x=1/3;
minP(x)=-1时,(π/2)x+(5/6)π=π/2,x=-2/3,
maxP(x)=1时,(π/2)x+(5/6)π=-π/2,x=-8/3。
当minP(x)=-1,(π/2)x+(5/6)π=π/2,x=-2/3时,
G(x)=(√3)sin[(π/2)x+π/3]=0;
当maxP(x)=1,(π/2)x+(5/6)π=-π/2,x=-8/3时,
G(x)=(√3)sin[(π/2)x+π/3]=3/2。
当min G(x)=-(√3),(π/2)x+π/3=-π/2,x=-5/3时,
P(x)=-sin[(π/2)x+(5/6)π]=0;
当max G(x)=(√3),(π/2)x+π/3=π/2,x=1/3时;
P(x)=-sin[(π/2)x+(5/6)π]=0
当x=-2/3时,G(x)=(√3)sin[(π/2)x+π/3]=0
P(x)=-sin[(π/2)x+(5/6)π]=-1,
综上有,
当x的区间为[-5/3,1/3]时,
函数f(x)= G(x)+ P(x)递增,递增区间为[-√3,√3]。
(Ⅱ)f(a+5/3)=-1,求sin[(π/2)a+π/3]的值,
函数f(x)= G(x)+ P(x)=-1,
由上得x=-2/3,
∵a+5/3=x=-2/3,
∴a=-7/3,
sin[(π/2)a+π/3]= sin(-5π/6)=-1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询