1个回答
展开全部
这八道题中的级数都是正项级数
(1)tan(π/4n)>π/4n>1/4n
因为∑(1/4n)发散,所以原级数发散
(2)n/(n^3+2)=1/(n^2+2/n)<1/n^2
因为∑(1/n^2)收敛,所以原级数收敛
(3)1/[(2n-1)*2n]<1/(2n-1)^2<=1/n^2
因为∑(1/n^2)收敛,所以原级数收敛
(4)(cosn)^2/n√n<=1/n^(3/2)
因为∑[1/n^(3/2)]收敛,所以原级数收敛
(5)lim(n->∞)[(n+1)/e^(n+1)]/(n/e^n)
=lim(n->∞)(1+1/n)/e
=1/e
<1
所以原级数收敛
(6)lim(n->∞)[(n+3)/2^(n+1)]/[(n+2)/2^n]
=lim(n->∞)[(n+3)/2(n+2)]
=lim(n->∞)[(1+3/n)/2(1+2/n)]
=1/2
<1
所以原级数收敛
(7)lim(n->∞)[5^(n+1)/(n+1)!]/(5^n/n!)
=lim(n->∞)5/(n+1)
=0
所以原级数收敛
(8)lim(n->∞)[(3^n*n!)/(n^n)]^(1/n)
=3*lim(n->∞)(n!/n^n)^(1/n)
=3*lim(n->∞)[(1/n)*(2/n)*...*(n/n)]^(1/n)
=3*lim(n->∞)e^ln{[(1/n)*(2/n)*...*(n/n)]^(1/n)}
=3*lim(n->∞)e^{(1/n)*[ln(1/n)+ln(2/n)+...+ln(n/n)]
=3*e^[∫(0,1)lnxdx]
=3*e^[(xlnx-x)|(0,1)]
=3*e^(-1)
>1
所以原级数发散
(1)tan(π/4n)>π/4n>1/4n
因为∑(1/4n)发散,所以原级数发散
(2)n/(n^3+2)=1/(n^2+2/n)<1/n^2
因为∑(1/n^2)收敛,所以原级数收敛
(3)1/[(2n-1)*2n]<1/(2n-1)^2<=1/n^2
因为∑(1/n^2)收敛,所以原级数收敛
(4)(cosn)^2/n√n<=1/n^(3/2)
因为∑[1/n^(3/2)]收敛,所以原级数收敛
(5)lim(n->∞)[(n+1)/e^(n+1)]/(n/e^n)
=lim(n->∞)(1+1/n)/e
=1/e
<1
所以原级数收敛
(6)lim(n->∞)[(n+3)/2^(n+1)]/[(n+2)/2^n]
=lim(n->∞)[(n+3)/2(n+2)]
=lim(n->∞)[(1+3/n)/2(1+2/n)]
=1/2
<1
所以原级数收敛
(7)lim(n->∞)[5^(n+1)/(n+1)!]/(5^n/n!)
=lim(n->∞)5/(n+1)
=0
所以原级数收敛
(8)lim(n->∞)[(3^n*n!)/(n^n)]^(1/n)
=3*lim(n->∞)(n!/n^n)^(1/n)
=3*lim(n->∞)[(1/n)*(2/n)*...*(n/n)]^(1/n)
=3*lim(n->∞)e^ln{[(1/n)*(2/n)*...*(n/n)]^(1/n)}
=3*lim(n->∞)e^{(1/n)*[ln(1/n)+ln(2/n)+...+ln(n/n)]
=3*e^[∫(0,1)lnxdx]
=3*e^[(xlnx-x)|(0,1)]
=3*e^(-1)
>1
所以原级数发散
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询