如图,已知AB是圆o的直径,点C在圆o上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB

Q:点M是弧AB的中点,CM交AB于点N,若AB=4,求MN×MC的值(前面已证PC是圆O的切线、BC=1/2AB,看看还能用的上吧。谢谢请尽快!)... Q:点M是弧AB的中点,CM交AB于点N,若AB=4,求MN×MC的值
(前面已证PC是圆O的切线、BC=1/2AB,看看还能用的上吧。谢谢 请尽快!)
展开
茫云隐月
2010-11-28 · TA获得超过947个赞
知道小有建树答主
回答量:150
采纳率:100%
帮助的人:143万
展开全部
连接MO=半径=2,则MO垂直于AB。BC=1/2AB=半径=2,三角形OBC
为正三角形,角COB=60度,OC=半径=2,三角形OCM为等腰三角形,角M=15度,MN=OM/cos(15),MC=2*OM*cos(15),
MN×MC=8
925830958
2012-06-02 · TA获得超过103个赞
知道答主
回答量:21
采纳率:0%
帮助的人:6.1万
展开全部
∠COB=2∠PCB=2∠OCA=2∠OAC
AC=PC,角A=角P
三角形ACO全等于三角形PCB
CO=CB
故三角形OBC为等边三角形
角A为30度
AB为直径,则三角形ACB为直角三角形
M为弧AB中点,则MN为角ACB平分线
角ACN=角BCN=45度
连结BM
同弧所对角相等,角CMB=角CAB=30度
角BNM=角ONC=角NCB+角OBC=105度
则角MBN=45度(三角形内角和)
角MBC=角MBA+角ABC=105度=角BNM
三角形BMN相似于三角形CMB
MC/BM=BM/MN
MC*MN=BM^2
角OBM=45度
三角形OBM为等腰直角三角形,AB=4,半径为2
BM=2根号2
平方为8
MC*MN=8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友8c33892
2012-11-04
知道答主
回答量:11
采纳率:0%
帮助的人:1.5万
展开全部
(1)证明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直径,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半径.
∴PC是⊙O的切线.(3分)
(2)证明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=12AB.(6分)
解:连接MA,MB,
∵点M是AB^的中点,
∴AM^=BM^,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴BMMC=MNBM.
∴BM2=MN•MC.
又∵AB是⊙O的直径,AM^=BM^,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=22.
∴MN•MC=BM2=8.(10分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-06-06
展开全部
(1)证明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直径,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半径.
∴PC是⊙O的切线.(3分)
(2)证明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=12AB.(6分)
解:连接MA,MB,
∵点M是AB^的中点,
∴AM^=BM^,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴BMMC=MNBM.
∴BM2=MN•MC.
又∵AB是⊙O的直径,AM^=BM^,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=22.
∴MN•MC=BM2=8.(10分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式