数列求和的并项求和

 我来答
果果就是爱生活
高能答主

2019-10-01 · 专注生活教育知识分享
果果就是爱生活
采纳数:2071 获赞数:272276

向TA提问 私信TA
展开全部

并项求和常采用先试探后求和的方法。

例:1-2+3-4+5-6+……+(2n-1)-2n

方法一:(并项)

求出奇数项和偶数项的和,再相减。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

方法三:

构造新的数列,可借用等差数列与等比数列的复合。

an=n(-1)^(n+1)

扩展资料:

1、公式求和法:

①等差数列、等比数列求和公式

②重要公式:1+2+…+n=  1 2 n(n+1);

1 2 +2 2 +…+n 2 =  1 6 n(n+1)(2n+1);

1 3 +2 3 +…+n 3 =(1+2+…+n) 2 =  1 4 n 2 (n+1) 2 。

2、裂项求和法:将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n =  1 ( A n +B)( A n +C) =  1 C-B (  1 A n +B -  1 An+C );  1 n(n+1) =  1 n -  1 n+1 。

3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n =b n c n ,其中{b n }是等差数列,{c n }是等比数列。

4、倒序相加法:S n 表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。                           

参考资料来源:百度百科-数列求和

心的舞台8888
2021-06-16 · TA获得超过12.9万个赞
知道小有建树答主
回答量:5548
采纳率:100%
帮助的人:102万
展开全部

并项求和常采用先试探后求和的方法。

例:1-2+3-4+5-6+……+(2n-1)-2n

方法一:(并项)

求出奇数项和偶数项的和,再相减。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

方法三:

构造新的数列,可借用等差数列与等比数列的复合。

an=n(-1)^(n+1)

数学归纳法:

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:

求证:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5

证明:

当n=1时,有:

1×2×3×4 = 24 = 2×3×4×5/5

假设命题在n=k时成立,于是:

1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
超然还安适丶白桦3861
推荐于2017-11-25 · TA获得超过174个赞
知道答主
回答量:184
采纳率:0%
帮助的人:60.3万
展开全部

(常采用先试探后求和的方法)
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶数项的和,再相减。
方法二:
(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
方法三:
构造新的数列,可借用等差数列与等比数列的复合。
an=n(-1)^(n+1)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
青孝羽歌
2020-02-17 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.4万
采纳率:27%
帮助的人:980万
展开全部
并项求和常采用先试探后求和的方法。
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶数项的和,再相减。
方法二:
(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
方法三:
构造新的数列,可借用等差数列与等比数列的复合。
an=n(-1)^(n+1)

扩展资料:
1、公式求和法:
①等差数列、等比数列求和公式
②重要公式:1+2+…+n=
1
2
n(n+1);
1
2
+2
2
+…+n
2
=
1
6
n(n+1)(2n+1);
1
3
+2
3
+…+n
3
=(1+2+…+n)
2
=
1
4
n
2
(n+1)
2

2、裂项求和法:将数列的通项分成两个式子的代数和,即a
n
=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a
n
=
1
(
A
n
+B)(
A
n
+C)
=
1
C-B

1
A
n
+B
-
1
An+C
);
1
n(n+1)
=
1
n
-
1
n+1

3、错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a
n
=b
n
c
n
,其中{b
n
}是等差数列,{c
n
}是等比数列。
4、倒序相加法:S
n
表示从第一项依次到第n项的和,然后又将S
n
表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S
n
的一种求和方法。

参考资料来源:百度百科-数列求和
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式