设一棵完全二叉树有100个叶子结点,则在该二叉树中的叶子结点数为

设一棵完全二叉树有100个叶子结点,则在该二叉树中的叶子结点数为... 设一棵完全二叉树有100个叶子结点,则在该二叉树中的叶子结点数为 展开
 我来答
我爱学习112
高粉答主

2021-01-08 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:164万
展开全部

如果是100个结点,如下:

设二叉树中度为0、1、2的结点个数分别为n0,n1,n2

因此n0 + n1 + n2 = 100

按照二叉树的性质n0 = n2 + 1,代入得

2n2 + 1 + n1 = 100

因为完全二叉树中度为1的结点个数最多1个

为满足上式,也只有n1 = 1

因此n2 = 49

所以叶子结点个数n0 = 50个

扩展资料

判断一棵树是否是完全二叉树的思路

1、如果树为空,则直接返回错

2、如果树不为空:层序遍历二叉树

(1)如果一个结点左右孩子都不为空,则pop该节点,将其左右孩子入队列;

(2)如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树;

(3)如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空;则该节点之后的队列中的结点都为叶子节点;该树才是完全二叉树,否则就不是完全二叉树。

轮看殊O
高粉答主

2020-12-26 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:754万
展开全部

如果是100个结点,如下:

设二叉树中度为0、1、2的结点个数分别为n0,n1,n2

因此n0 + n1 + n2 = 100

按照二叉树的性质n0 = n2 + 1,代入得

2n2 + 1 + n1 = 100

因为完全二叉树中度为1的结点个数最多1个

为满足上式,也只有n1 = 1

因此n2 = 49

所以叶子结点个数n0 = 50个


扩展资料:


一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。


具有n个节点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个节点,至多有2k-1个节点。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
chiconysun
推荐于2018-01-12 · TA获得超过2.2万个赞
知道大有可为答主
回答量:5410
采纳率:92%
帮助的人:2597万
展开全部
是100个结点还是100个叶子,如果是100个叶子,也就不用算了
如果是100个结点,如下:
设二叉树中度为0、1、2的结点个数分别为n0,n1,n2
因此n0 + n1 + n2 = 100
按照二叉树的性质n0 = n2 + 1,代入得
2n2 + 1 + n1 = 100
因为完全二叉树中度为1的结点个数最多1个
为满足上式,也只有n1 = 1
因此n2 = 49
所以叶子结点个数n0 = 50个
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
IKAROSofSKY
2019-11-13
知道答主
回答量:8
采纳率:0%
帮助的人:4730
展开全部
100个节点
一共200个指针域;(每个节点都有一个左孩子和一个右孩子)
有100-1=99个枝(根节点头上没有枝)
所以一共有200-99=101个空指针域
所以有50个左、右孩子都为空的节点
即得出有50个叶子结点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
街舞爱好者在这
高粉答主

2021-01-22 · 关注我不会让你失望
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式