函数f(x)的导数等于0的意义是什么?

逄德覃癸
2019-08-26 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:26%
帮助的人:735万
展开全部
表明该函数可能存在极值点。
一阶导数等于0只是有极值的必要条件,不是充分条件,也就是说:
有极值的地方,其切线的斜率一定为0;切线斜率为0的地方,不一定是极值点。
举例说明:
f(x)=x³,它的导数为f′(x)=3x²。x=0是临界点。那么,究竟是不是极值点呢?我们再看下x=0左右两侧的斜率。其实不用画图,直接取两个值测试即可。取x=-1,f′(x)>0取x=2,f′(x)>0斜率一直为正,所以x=0是个水平拐点。
扩展资料:
求极值的方法
求全局极值是最优化方法的目的。对于一元二阶可导函数,求极值的一种方法是求驻点(亦称为静止点,停留点,英语:stationary
point),也就是求一阶导数为零的点。如果在驻点的二阶导数为正,那么这个点就是局部最小值;如果二阶导数为负,则是局部最大值;如果为零,则还需要进一步的研究。
一般地,如果在驻点处的一阶、二阶、三阶……直到N阶导数都是零,而N+1阶导数不为零,则当N奇数且N+1阶导数为正时,该点为极小值;当N是奇数且N+1阶导数为负时,该点为极大值;如果N是偶数,则该点不是极值。
如果这个函数定义在一个有界区域内,则还要检查局域的边界点。如果函数在定义域内存在不可导点,则这些不可导点也可能是极值点。
参考资料来源:百度百科——极值
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
督素琴锺子
2019-11-29 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.4万
采纳率:34%
帮助的人:815万
展开全部
表明该函数可能存在极值点。
一阶导数等于0只是有极值的必要条件,不是充分条件,也就是说:有极值的地方,其切线的斜率一定为0;切线斜率为0的地方,不一定是极值点。
举例说明:
f(x)=x³,它的导数为f′(x)=3x²。x=0是临界点。那么,究竟是不是极值点呢?我们再看下x=0左右两侧的斜率。其实不用画图,直接取两个值测试即可。取x=-1,f′(x)>0取x=2,f′(x)>0斜率一直为正,所以x=0是个水平拐点。
扩展资料:
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
参考资料来源:搜狗百科——导数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
了尘和尚
推荐于2018-08-30 · 幻人心识本来无,罪福皆空无所住。
了尘和尚
采纳数:4256 获赞数:20082

向TA提问 私信TA
展开全部
表明该函数可能存在极值点。
一阶导数等于0只是有极值的必要条件,不是充分条件,也就是说:
有极值的地方,其切线的斜率一定为0;
切线斜率为0的地方,不一定是极值点。
例如,y = x^3, y'=3x^2,当x=0时,y'=0,但x=0并不是极值点。
所以,在一阶导数等于0的地方,还必须计算二阶导数,才能作出充分的判断。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
honest11111
2010-11-28 · TA获得超过1万个赞
知道大有可为答主
回答量:1750
采纳率:100%
帮助的人:737万
展开全部
导数等于0说明函数是一个常函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友c602635
2010-11-28 · 超过12用户采纳过TA的回答
知道答主
回答量:209
采纳率:0%
帮助的人:52.9万
展开全部
为常数函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式