1个回答
展开全部
2、(4)原式=lim(x->+∞) {[1+1/(-x)]^(-x)}^(-1/√x)
=e^0
=1
(5)原式=lim(x->∞) {[1+1/(x^2-1)]^(x^2-1)}^[x/(x^2-1)]
=e^0
=1
3、(1)因为1/(n^2+π)>1/(n^2+2π)>...>1/(n^2+nπ)
所以n^2/(n^2+π)>n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]>n^2/(n^2+nπ)
因为lim(n->∞) n^2/(n^2+π)=1,且lim(n->∞) n^2/(n^2+nπ)=1
所以根据极限的夹逼性,原极限存在,且极限值=1
=e^0
=1
(5)原式=lim(x->∞) {[1+1/(x^2-1)]^(x^2-1)}^[x/(x^2-1)]
=e^0
=1
3、(1)因为1/(n^2+π)>1/(n^2+2π)>...>1/(n^2+nπ)
所以n^2/(n^2+π)>n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]>n^2/(n^2+nπ)
因为lim(n->∞) n^2/(n^2+π)=1,且lim(n->∞) n^2/(n^2+nπ)=1
所以根据极限的夹逼性,原极限存在,且极限值=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询