机器学习模型的泛化能力不足,有什么改进思路

 我来答
百度网友59eacd4
2016-11-17 · TA获得超过460个赞
知道小有建树答主
回答量:163
采纳率:0%
帮助的人:117万
展开全部
首先你要知道为什么自己模型的泛化能力不足,一般来说有两个方面吧:

1:在训练集上效果不错,然后在测试集上发现效果不好,这种很大的情况是过拟合问题,也就是说你的模型过多的去拟合训练集去了,利用一些正则化思想可以比较好的解决这些问题。
2:在训练集上效果不行,在测试集上效果更差。这时候你要考虑的是你选择的机器学习算法到底有没有用,你选取的特征到底有没有用,换个算法,换个特征,也许才能提高。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式