
求高阶微分方程的通解
展开全部
令u=y',则u'=y''
u'=u^3+u
du/u(1+u^2)=dx
∫[1/u-u/(1+u^2)]du=∫dx
ln|u|-(1/2)*ln|1+u^2|=x+C
ln|u/√(1+u^2)|=x+C
u/√(1+u^2)=C*e^x
u^2/(1+u^2)=C^2*e^(2x)
1/u^2=C^(-2)*e^(-2x)-1
u^2=C^2*e^(2x)/[1-C^2*e^(2x)]
u=C*e^x/√[1-C^2*e^(2x)]
y'=C*e^x/√[1-C^2*e^(2x)]
y=∫C*e^x/√[1-C^2*e^(2x)]dx
=∫d(C*e^x)/√[1-(C*e^x)^2]
=arcsin(C*e^x)+C1,其中C和C1都是任意常数
u'=u^3+u
du/u(1+u^2)=dx
∫[1/u-u/(1+u^2)]du=∫dx
ln|u|-(1/2)*ln|1+u^2|=x+C
ln|u/√(1+u^2)|=x+C
u/√(1+u^2)=C*e^x
u^2/(1+u^2)=C^2*e^(2x)
1/u^2=C^(-2)*e^(-2x)-1
u^2=C^2*e^(2x)/[1-C^2*e^(2x)]
u=C*e^x/√[1-C^2*e^(2x)]
y'=C*e^x/√[1-C^2*e^(2x)]
y=∫C*e^x/√[1-C^2*e^(2x)]dx
=∫d(C*e^x)/√[1-(C*e^x)^2]
=arcsin(C*e^x)+C1,其中C和C1都是任意常数
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询