证明,对于任意的10个自然数,一定能从中找到8个数a,b,c,d,e,f,g,h,使得(a-b)(

证明,对于任意的10个自然数,一定能从中找到8个数a,b,c,d,e,f,g,h,使得(a-b)(证明,对于任意的10个自然数,一定能从中找到8个数a,b,c,d,e,f... 证明,对于任意的10个自然数,一定能从中找到8个数a,b,c,d,e,f,g,h,使得(a-b)(证明,对于任意的10个自然数,一定能从中找到8个数a,b,c,d,e,f,g,h,使得(a-b)(c-d)(e-f)(g-h)能被945整除。快快快急求!求详细过程 展开
 我来答
大花啤酒肚
2016-12-31 · TA获得超过1525个赞
知道大有可为答主
回答量:1472
采纳率:85%
帮助的人:604万
展开全部
若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),即b∣a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。整除属于除尽的一种特殊情况。
看清楚整除的概念,你随便找8个数两两相减差为1,再把四个1相乘还是1,1不能被945整除,所以这命题是假命题。
zhsclzr
2016-12-27 · TA获得超过2.1万个赞
知道大有可为答主
回答量:7230
采纳率:94%
帮助的人:1491万
展开全部
这10个自然数分别除以9,由于除以9的余数只有0~8九个数,则这10个自然数中至少有2个数的余数相同,那么它们的差就一定是9 的倍数。取出这两个数,令它们分别为a、b,于是(a-b)是9的倍数。
在剩下的8个数中,由于除以7的余数只有0~6七个数,则这8个自然数除以7,其中至少有2个数的余数相同,那么它们的差就一定是7 的倍数。取出这两个数,令它们分别为c、d,于是(c-d)是7的倍数。
同理,在剩下的6个数中,一定能有两个数e、f,使得(e-f)为5的倍数。再在剩下的4个数中,一定能有两个数g、h,使得(g-h)为3的倍数.
由于945=9*7*5*3,而(a-b),(c-d),(e-f),(g-h)分别是9,7,5,3的倍数,所以(a-b)(c-d)(e-f)(g-h)能被945整除。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式