∫(x²-9)½/xdx的不定积分,详解,谢谢

 我来答
Dilraba学长
高粉答主

2019-05-14 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411012

向TA提问 私信TA
展开全部

答案为 √(x² - 9) - 3arccos(3/x) + C。

解题过程如下:

令x = 3secθ,dx = 3secθtanθ dθ,√(x² - 9) = √(9sec²θ - 9) = 3tanθ,x > 3

∫ √(x² - 9)/x dx

= ∫ √(9sec²θ - 9)/(3secθ) · (3secθtanθ dθ)

= ∫ 3tanθ · tanθ dθ

= 3∫ sec²θ - 1 dθ

= 3tanθ - 3θ + C

= 3 · √(x² - 9)/3 - 3arcsec(x/3) + C

= √(x² - 9) - 3arccos(3/x) + C

记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

睁开眼等你
高粉答主

2017-11-27 · 每个回答都超有意思的
知道大有可为答主
回答量:8033
采纳率:80%
帮助的人:2111万
展开全部


如图

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式