
1个回答
2017-09-17
展开全部
((p∨q)→r)→p
⇔¬((p∨q)→r)∨p 变成 交并
⇔¬(¬(p∨q)∨r)∨p 变成 交并
⇔((p∨q)∧¬r)∨p 德摩根定律
⇔((p∨q)∨p)∧(¬r∨p)
⇔(p∨q)∧(¬r∨p)
⇔(p∨q∨(r∧¬r))∧(p∨(¬q∧q)∨¬r)
⇔(p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨¬r)∧(p∨q∨¬r)
⇔(p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨¬r)
⇔¬((p∨q)→r)∨p 变成 交并
⇔¬(¬(p∨q)∨r)∨p 变成 交并
⇔((p∨q)∧¬r)∨p 德摩根定律
⇔((p∨q)∨p)∧(¬r∨p)
⇔(p∨q)∧(¬r∨p)
⇔(p∨q∨(r∧¬r))∧(p∨(¬q∧q)∨¬r)
⇔(p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨¬r)∧(p∨q∨¬r)
⇔(p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨¬r)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |