怎么求方程的最大值和最小值
求函数最值的方法如下:
1.配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.
2.判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.
3.利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.
4.利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.
5.换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值.
6.数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值.
扩展资料:
找到全局最大值和最小值是数学优化的目标。如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。
因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。
费马定理可以发现局部极值的微分函数,它表明它们必须发生在临界点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。
对于分段定义的任何功能,通过分别查找每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或最小值)。
2021-01-25 广告
一个函数y=ax2+bx+c对应一条抛物线,它的最值分为以下几种情况:
第一种,x没有限制,可以取到整个定义域.这时在整个定义域上,抛物线的顶点Y值是这个函数的最值,也就是说,当x取为抛物线的对称轴值时,即x=-b/2a时,所得的y值是这个函数的最值.当a是正数时,抛物线开口向上,所得到的最值是抛物线最低点,也就是最小值,此时此函数无最大值.当a是负数时,抛物线开口向下,所的最值为最大值,此函数无最小值.
第二种,x给定了一个变化范围,它只能取到抛物线的一部分,这时需要判断x能够取到的范围是否包括抛物线的对称轴x=-b/2a.
如果包括,那它的一个最值一定在对称轴处得到(最大值还是最小值要由a的正负判断,a正就是最小值,a负就是最大值).另外一个最值出现在所给定义域的端点,此时可以把两个端点值都带入函数,分别计算y值,比较一下就可以;如果给的是代数形式,也可以用与对称轴距离的大小来判断,与对称轴距离大的那个端点能够取到最值.
如果x的取值范围不包括对称轴,此时无论定义域分成几段,它的最值一定出现在定义域的端点处,当a〉0时,离对称轴最远的端点取得最大值,最近的端点取得最小值.当a〈0时,最远端取得最小值,最近端取得最大值.
基本上就是这样.
一个函数y=ax2+bx+c对应一条抛物线,它的最值分为以下几种情况:
第一种,x没有限制,可以取到整个定义域.这时在整个定义域上,抛物线的顶点Y值是这个函数的最值,也就是说,当x取为抛物线的对称轴值时,即x=-b/2a时,所得的y值是这个函数的最值.当a是正数时,抛物线开口向上,所得到的最值是抛物线最低点,也就是最小值,此时此函数无最大值.当a是负数时,抛物线开口向下,所的最值为最大值,此函数无最小值.
第二种,x给定了一个变化范围,它只能取到抛物线的一部分,这时需要判断x能够取到的范围是否包括抛物线的对称轴x=-b/2a.
如果包括,那它的一个最值一定在对称轴处得到(最大值还是最小值要由a的正负判断,a正就是最小值,a负就是最大值).另外一个最值出现在所给定义域的端点,此时可以把两个端点值都带入函数,分别计算y值,比较一下就可以;如果给的是代数形式,也可以用与对称轴距离的大小来判断,与对称轴距离大的那个端点能够取到最值.
如果x的取值范围不包括对称轴,此时无论定义域分成几段,它的最值一定出现在定义域的端点处,当a〉0时,离对称轴最远的端点取得最大值,最近的端点取得最小值.当a〈0时,最远端取得最小值,最近端取得最大值.
基本上就是这样.