求不定积分,

 我来答
匿名用户
2018-06-09
展开全部
1、第二类换元积分法令t=√(x-1),则x=t^2+1,dx=2tdt 原式=∫(t^2+1)/t*2tdt =2∫(t^2+1)dt =(2/3)*t^3+2t+C =(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数 2、第一类换元积分法原式=∫(x-1+1)/√(x-1)dx =∫[√(x-1)+1/√(x-1)]d(x-1) =(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数 3、分部积分法原式=∫2xd[√(x-1)] =2x√(x-1)-∫2√(x-1)dx =2x√(x-1)-(4/3)*(x-1)^(3/2)+C,其中C是你任意常数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式