将1/2+x展开为x的幂级数
展开全部
f(x) = 1/(2+x) =>f(0) =1/2
f'(x) = -1/(2+x)^2 =>f'(0)/1! =-1/4
f''(x) = 2/(2+x)^3 =>f''(0)/2! =1/8
...
f^(n)(x)= (-1)^n.n!/(2+x)^(n+1) =>f^(n)(0)/n! =(-1)^n/2^(n+1)
1/(2+x)
=f(x)
=f(0) + [f'(0)/1!]x+[f''(0)/2!]x^2+...+[f^(n)(0)/n!]x^n+...
=1/2 - (1/4)x +(1/8)x^3+...+ [(-1)^n/2^(n+1) ]x^n+...
f'(x) = -1/(2+x)^2 =>f'(0)/1! =-1/4
f''(x) = 2/(2+x)^3 =>f''(0)/2! =1/8
...
f^(n)(x)= (-1)^n.n!/(2+x)^(n+1) =>f^(n)(0)/n! =(-1)^n/2^(n+1)
1/(2+x)
=f(x)
=f(0) + [f'(0)/1!]x+[f''(0)/2!]x^2+...+[f^(n)(0)/n!]x^n+...
=1/2 - (1/4)x +(1/8)x^3+...+ [(-1)^n/2^(n+1) ]x^n+...
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询