1个回答
展开全部
f(x)
=x^2.sin(1/x) + sin2x ; x≠0
=0 ; x=0
lim(x->0) f(x)
=lim(x->0) [x^2.sin(1/x) + sin2x ]
=0
=f(0)
x=0, f(x)连续
f'(0)
=lim(h->0) [h^2.sin(1/h) + sin2h -f(0)]/h
=lim(h->0) [h^2.sin(1/h) + 2h]/h
=lim(h->0) [h.sin(1/h) + 2]
=2
ie
f'(0)=2
=x^2.sin(1/x) + sin2x ; x≠0
=0 ; x=0
lim(x->0) f(x)
=lim(x->0) [x^2.sin(1/x) + sin2x ]
=0
=f(0)
x=0, f(x)连续
f'(0)
=lim(h->0) [h^2.sin(1/h) + sin2h -f(0)]/h
=lim(h->0) [h^2.sin(1/h) + 2h]/h
=lim(h->0) [h.sin(1/h) + 2]
=2
ie
f'(0)=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询