展开全部
因为:
An - A(n-1) = 2n
A(n-1) - A(n-2) = 2(n-1)
……
A2 - A1 = 2 * 2
这些等式两边分别相加,可以得到:
An - A1 = 2n + 2(n-1) + 2(n-2) + …… + 2*2
An = 2n + 2(n-1) + 2(n-2) + …… + 2*2 + 2*1
= 2*[n + (n-1) + (n-2) + …… + 2 + 1]
= n(n+1)
Bn = (n²+2n)/n² = (n+2)/n
那么,{Bn} 前 n 项的积:
Tn = (3/1) * (4/2) * (5/3) * (6/4) * …… * (n+1)/(n-1) * (n+2)/n
=(1/1) * (1/2) * (n+1) * (n+2)
=(n+1)(n+2)/2
An - A(n-1) = 2n
A(n-1) - A(n-2) = 2(n-1)
……
A2 - A1 = 2 * 2
这些等式两边分别相加,可以得到:
An - A1 = 2n + 2(n-1) + 2(n-2) + …… + 2*2
An = 2n + 2(n-1) + 2(n-2) + …… + 2*2 + 2*1
= 2*[n + (n-1) + (n-2) + …… + 2 + 1]
= n(n+1)
Bn = (n²+2n)/n² = (n+2)/n
那么,{Bn} 前 n 项的积:
Tn = (3/1) * (4/2) * (5/3) * (6/4) * …… * (n+1)/(n-1) * (n+2)/n
=(1/1) * (1/2) * (n+1) * (n+2)
=(n+1)(n+2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询