线性代数求二次型的秩

 我来答
博学小赵爱生活
高能答主

2020-07-22 · 专注于食品生活科技行业
博学小赵爱生活
采纳数:456 获赞数:111889

向TA提问 私信TA
展开全部

写出二次型矩阵为:

{1,-1,-1}

{-1,1,1}

{-1,1,3} 

r2+r1,r3+r1,r3/2,交换r2r3,r1+r2。

{1,-1,0}

{0,0,1}

{0,0,0}

显然二次型的秩为2。

二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。

而三个变数的二次型的特征值的实性则是由阿歇特(j-r.p.hachette)、蒙日和泊松(s.d.poisson,1781~1840)建立的。

扩展资料:

向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。考虑m× n矩阵,将A的秩定义为向量组F的秩。

则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目,即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。

矩阵的秩性质:如果 B是秩 n的 n× k矩阵,则 AB有同 A一样的秩。如果 C是秩 m的 l× m矩阵,则 CA有同 A一样的秩。A的秩等于 r,当且仅当存在一个可逆 m× m矩阵 X和一个可逆的 n× n矩阵 Y使得 这里的 Ir指示 r× r单位矩阵

证明可以通过高斯消去法构造性地给出。矩阵的秩加上矩阵的零化度等于矩阵的纵列数(这就是秩-零化度定理)。

参考资料来源:百度百科-秩



上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
一个人郭芮
高粉答主

2018-05-26 · GR专注于各种数学解题
一个人郭芮
采纳数:37942 获赞数:84708

向TA提问 私信TA
展开全部
写出二次型矩阵为
1 -1 -1
-1 1 1
-1 1 3 r2+r1,r3+r1,r3/2,交换r2r3,r1+r2

1 -1 0
0 0 1
0 0 0
显然二次型的秩为2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式