1个回答
展开全部
(p→q)∧(q→r)
⇔ (¬p∨q)∧(¬q∨r) 变成 合取析取
⇔ (¬p∨q∨(¬r∧r))∧((¬p∧p)∨¬q∨r) 补项
⇔ ((¬p∨q∨¬r)∧(¬p∨q∨r))∧((¬p∧p)∨¬q∨r) 分配律
⇔ (¬p∨q∨¬r)∧(¬p∨q∨r)∧((¬p∧p)∨¬q∨r) 结合律
⇔ (¬p∨q∨¬r)∧(¬p∨q∨r)∧((¬p∨¬q∨r)∧(p∨¬q∨r)) 分配律
⇔ (¬p∨q∨¬r)∧(¬p∨q∨r)∧(¬p∨¬q∨r)∧(p∨¬q∨r) 结合律
得到主合取范式,
再检查遗漏的极大项
⇔ M1∧M2∧M3∧M5
⇔ ∏(1,2,3,5)
⇔ ¬∏(1,2,3,5)
⇔ ∑(1,2,3,5)
⇔ m1∨m2∨m3∨m5
⇔ ¬(p∨q∨r)∨¬(p∨q∨¬r)∨¬(p∨¬q∨¬r)∨¬(¬p∨¬q∨¬r) 德摩根定律
⇔ (¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧q∧r) 德摩根定律
⇔ (¬p∨q)∧(¬q∨r) 变成 合取析取
⇔ (¬p∨q∨(¬r∧r))∧((¬p∧p)∨¬q∨r) 补项
⇔ ((¬p∨q∨¬r)∧(¬p∨q∨r))∧((¬p∧p)∨¬q∨r) 分配律
⇔ (¬p∨q∨¬r)∧(¬p∨q∨r)∧((¬p∧p)∨¬q∨r) 结合律
⇔ (¬p∨q∨¬r)∧(¬p∨q∨r)∧((¬p∨¬q∨r)∧(p∨¬q∨r)) 分配律
⇔ (¬p∨q∨¬r)∧(¬p∨q∨r)∧(¬p∨¬q∨r)∧(p∨¬q∨r) 结合律
得到主合取范式,
再检查遗漏的极大项
⇔ M1∧M2∧M3∧M5
⇔ ∏(1,2,3,5)
⇔ ¬∏(1,2,3,5)
⇔ ∑(1,2,3,5)
⇔ m1∨m2∨m3∨m5
⇔ ¬(p∨q∨r)∨¬(p∨q∨¬r)∨¬(p∨¬q∨¬r)∨¬(¬p∨¬q∨¬r) 德摩根定律
⇔ (¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧q∧r) 德摩根定律
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询