求椭圆x^2/a^2+y^2/b^2=1绕x轴旋转所成旋转体的体积(用微积分计算)

 我来答
简单生活Eyv
2021-08-07 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:24.7万
展开全部

考虑对称性,只对第一象限的1/4图形旋转,再乘以2即可。

绕X轴体积:V1=2π∫[0,a] (b^2-b^2x^2/a^2)dx

=2π(b^2x-b^2x^3/3)[0,a]

=2π[b^2a-b^2a^3/(3a^2)]

=2π(2ab^2)/3

=4πab^2/3

创立意义

微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分这些问题往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门学科的创立并不是某一个人的业绩,而是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的,微积分也是这样。

帐号已注销
2020-11-09 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:164万
展开全部

旋转椭球体的体积,把它看成是椭圆沿长轴或短轴旋转而成的:

①zhiV=4πaab/3 (以短轴2b为旋转轴)。

②V=4πabb/3 (以长轴2a为旋转轴) 

y=(b/a)*√(a^2-x^2)就是原来的椭圆的变形。

结果为V=4πabb/3

上半:y=(b/a)*√(a^2-x^2)

下半:y=-=(b/a)*√(a^2-x^2)

例如:

椭圆方程:y^2=b^2-b^2x^2/a^2, x^2=a^2-a^2y^2/b^2

绕X轴体积,V1=2π∫[0,a] (b^2-b^2x^2/a^2)dx

=2π(b^2x-b^2x^3/3)[0,a]

=2π[b^2a-b^2a^3/(3a^2)]

=2π(2ab^2)/3

=4πab^2/3

同理绕Y轴体积:

V2=2π∫[0,b] (a^2-a^2y^2/b^2)dy

=2π[0,b][a^2y-a^2y^3/(3b^2)]

=2π[a^2b-a^2b^3/(3b^2)]

=2π(2a^2b/3)

=4πa^2b/3

扩展资料:

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,可以用切线段来近似代替曲线段。

参考资料来源:百度百科-微积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2023-04-05 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1580万
展开全部

简单分析一下,答案如图所示

绕x轴

绕y轴

备注

例题

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
像昨天ff
高粉答主

2018-12-29 · 每个回答都超有意思的
知道大有可为答主
回答量:5229
采纳率:68%
帮助的人:665万
展开全部

如图

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
九号有人爱
2018-12-29
知道答主
回答量:25
采纳率:0%
帮助的人:9.4万
展开全部



望采纳

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式