比的化简和比的应用手抄报怎么画
展开全部
所谓按比例分配就是把一个数量按照一定的比进行分配。它是“平均分”问题的发展。例如,把12张画片分给甲、乙两个小朋友,如果按1∶1分,习惯上称平均分。如果按2∶1分,就是通常所说的按比分配。显然,平均分是按比分配的特例。按比例分配还有按正比例和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。
按比例分配问题有不同解法,主要有三种:一是把比看作分得的份数,用先求出每一份的方法来解答;二是把比化为分数,用分数乘法来解答;三是用比例知识来解答。较早的算术课本通常采用第三种方法,按比例分配的名称由此而来。现在的小学数学教材,一般以第二种方法为主,因为学生在理解了比和分数的关系,并掌握分数乘法实际应用的基础上,比较容易接受这种方法,而且也有利于加强知识间的联系。考虑到学生尚未学习比例,且教材避开了比例方法,所以教学中不必出现“按比例分配”这一名称。
教材通过例2,以清洁剂浓缩液的稀释为例,提出问题,引导学生把一个数量按照已知的比分成两部分。进而通过“做一做”的第2题,教学把一个数量按照已知的比分成三部分的问题。
教学建议
1. 联系相关知识,促进学生自主学习。
在这部分内容中,因为比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识,具有明显的、可供利用的内在联系。比如,比的后项不能为0与除数分母不能为0,比的基本性质与商不变性质和分数的基本性质,求比值与求商,化简比与约分,按比例分配与求一个数的几分之几是多少等等。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
2. 让学生感悟相关知识的联系与区别,使新旧知识融会贯通。
在本节内容的学习过程中,新旧知识的联系,不仅有利于生成新知识,也能加深对旧知识的理解,使新旧知识融会贯通。为此,教学时应当采用适当的方式,让学生看清并理解相关知识的联系,知道它们的区别。同时也应注意,揭示知识的联系与区别,要考虑学生的理解水平,不宜求全、深究。因为在小学阶段,很多知识不可能,也没有必要讲深讲透。
具体内容的说明和教学建议
1. 比的意义。
编写意图
(1)为了帮助学生理解比的意义,教材精心选择了中国人民引以为豪的内容作为载体,这一内容既富有教育意义,又能比较自然地引出比的两种应用情况。教材先介绍飞船里的两面长方形小旗,给出真实数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。然后再介绍飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出非同类量的比。进而通过这两种情况的实例,概括比的意义。接着以这几个比为例,说明比的读、写及比的各部分名称,并由比值计算的实例,引出“比值通常用分数表示”,然后根据分数与除法的关系,具体说明比也可以写成分数形式。最后,由小精灵提出问题,启发学生思考:“比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?”
(2)“做一做”,安排了两道练习。一道是根据条件和要求写出比并求比值的练习,用以巩固比的概念;另一道是求未知的前项或后项的练习,旨在通过求比的未知项,从另一侧面理解比与除法的关系。
教学建议
(1)教学比的意义前,可以先复习一些除法的应用,如:
①某班统计会骑车的人数,男生有18人,女生有12人。会骑自行车的男生人数是女生人数的多少倍?女生人数是男生人数的几分之几?
②路程÷时间=( )
总价÷数量=( )
教学比的意义时,可以先扼要介绍中国首次载人航天成功的大致情况,然后出示航天员杨利伟在“神舟五号”飞船里展示联合国旗和我国国旗的照片,引出两面旗,给出它们的长和宽,让学生用算式表示长和宽的关系。
15÷10=1.5,表示长是宽的多少倍;
10÷15=2/3,表示宽是长的几分之几。
由此引出:长和宽之间的倍数关系,除了用除法表示之外,还有一种表示方法,即说成“长和宽的比是15比10;或宽和长的比是10比15”。教师还可以说明,不论长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
接着,出示“神舟五号”进入运行轨道后的运行数据:平均90分钟绕地球一周,大约运行42252 km。让学生用算式表示飞船的速度。由此引出:表示路程和时间的关系也还有一种形式,就是用路程和时间的比来表示,如“神舟五号”运行路程和时间的比是42252比90。然后通过提问:路程和时间,是不是同类的量?使学生知道两个不同类量的关系也可以用比表示。教师还可以指出,两个同类量的比表示这两个量
按比例分配问题有不同解法,主要有三种:一是把比看作分得的份数,用先求出每一份的方法来解答;二是把比化为分数,用分数乘法来解答;三是用比例知识来解答。较早的算术课本通常采用第三种方法,按比例分配的名称由此而来。现在的小学数学教材,一般以第二种方法为主,因为学生在理解了比和分数的关系,并掌握分数乘法实际应用的基础上,比较容易接受这种方法,而且也有利于加强知识间的联系。考虑到学生尚未学习比例,且教材避开了比例方法,所以教学中不必出现“按比例分配”这一名称。
教材通过例2,以清洁剂浓缩液的稀释为例,提出问题,引导学生把一个数量按照已知的比分成两部分。进而通过“做一做”的第2题,教学把一个数量按照已知的比分成三部分的问题。
教学建议
1. 联系相关知识,促进学生自主学习。
在这部分内容中,因为比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识,具有明显的、可供利用的内在联系。比如,比的后项不能为0与除数分母不能为0,比的基本性质与商不变性质和分数的基本性质,求比值与求商,化简比与约分,按比例分配与求一个数的几分之几是多少等等。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
2. 让学生感悟相关知识的联系与区别,使新旧知识融会贯通。
在本节内容的学习过程中,新旧知识的联系,不仅有利于生成新知识,也能加深对旧知识的理解,使新旧知识融会贯通。为此,教学时应当采用适当的方式,让学生看清并理解相关知识的联系,知道它们的区别。同时也应注意,揭示知识的联系与区别,要考虑学生的理解水平,不宜求全、深究。因为在小学阶段,很多知识不可能,也没有必要讲深讲透。
具体内容的说明和教学建议
1. 比的意义。
编写意图
(1)为了帮助学生理解比的意义,教材精心选择了中国人民引以为豪的内容作为载体,这一内容既富有教育意义,又能比较自然地引出比的两种应用情况。教材先介绍飞船里的两面长方形小旗,给出真实数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。然后再介绍飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出非同类量的比。进而通过这两种情况的实例,概括比的意义。接着以这几个比为例,说明比的读、写及比的各部分名称,并由比值计算的实例,引出“比值通常用分数表示”,然后根据分数与除法的关系,具体说明比也可以写成分数形式。最后,由小精灵提出问题,启发学生思考:“比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?”
(2)“做一做”,安排了两道练习。一道是根据条件和要求写出比并求比值的练习,用以巩固比的概念;另一道是求未知的前项或后项的练习,旨在通过求比的未知项,从另一侧面理解比与除法的关系。
教学建议
(1)教学比的意义前,可以先复习一些除法的应用,如:
①某班统计会骑车的人数,男生有18人,女生有12人。会骑自行车的男生人数是女生人数的多少倍?女生人数是男生人数的几分之几?
②路程÷时间=( )
总价÷数量=( )
教学比的意义时,可以先扼要介绍中国首次载人航天成功的大致情况,然后出示航天员杨利伟在“神舟五号”飞船里展示联合国旗和我国国旗的照片,引出两面旗,给出它们的长和宽,让学生用算式表示长和宽的关系。
15÷10=1.5,表示长是宽的多少倍;
10÷15=2/3,表示宽是长的几分之几。
由此引出:长和宽之间的倍数关系,除了用除法表示之外,还有一种表示方法,即说成“长和宽的比是15比10;或宽和长的比是10比15”。教师还可以说明,不论长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
接着,出示“神舟五号”进入运行轨道后的运行数据:平均90分钟绕地球一周,大约运行42252 km。让学生用算式表示飞船的速度。由此引出:表示路程和时间的关系也还有一种形式,就是用路程和时间的比来表示,如“神舟五号”运行路程和时间的比是42252比90。然后通过提问:路程和时间,是不是同类的量?使学生知道两个不同类量的关系也可以用比表示。教师还可以指出,两个同类量的比表示这两个量
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询