求解微分方程(x-ycosy/x)dx+xcosy/xdy=0
展开全部
[x-ycos(y/x)]dx+xcos(y/x)dy=0 ?
xdx-ycos(y/x)dx-xcosx(y/x)dy=0
xdx=(xdy-ydx)cos(y/x)
dx/x=(xdy-ydx)cos(y/x)/x²
dx/x=cos(y/x)·d(y/x) (u/v)'=(u'v-uv')/v²
dx/x=d[sin(y/x)]
∫dx/x=∫d[sin(y/x)]
ln|x|=sin(y/x)+C
x=Ce^[sin(y/x)]
xdx-ycos(y/x)dx-xcosx(y/x)dy=0
xdx=(xdy-ydx)cos(y/x)
dx/x=(xdy-ydx)cos(y/x)/x²
dx/x=cos(y/x)·d(y/x) (u/v)'=(u'v-uv')/v²
dx/x=d[sin(y/x)]
∫dx/x=∫d[sin(y/x)]
ln|x|=sin(y/x)+C
x=Ce^[sin(y/x)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询