令 y' = p, 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy, 则
pdp/dy = 1+p^2, pdp/(1+p^2) = dy, (1/2)ln(1+p^2) = y+(1/2)lnC1
1+p^2 = C1e^(2y), dy/dx = p = ±√[C1e^(2y)-1],
dy/√[C1e^(2y)-1] = ±dx
令 u = √[C1e^(2y)-1], 则 y = (1/2)ln[(1+u^2)/C1]
∫dy/√[C1e^(2y)-1] = ∫du/(1+u^2) = arctanu = arctan√[C1e^(2y)-1]
于是原微分方程通解为 arctan√[C1e^(2y)-1] = C2 ± x
令 y' = p, 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy, 则
y^3pdp/dy = 1, pdp = dy/y^3, (1/2)p^2 = -(1/2)y^(-2) + (1/2)C1
p = ±√[C1-1/y^2] , dy/√(C1-1/y^2) = ±dx,
ydy/√(C1y^2-1) = ±dx , [1/(2C1)]d(C1y^2-1)/√(C1y^2-1) = ±dx,
通解为 (1/C1)√(C1y^2-1) = C2 ± x
不是,这是两个题啊。
那怎写在一起了
(1). y''=1+y'²;
解:令y'=P,则y''=dP/dx;代入原方程得:dP/dx=1+P²;
分离变量得:dP/(1+P²)=dx,积分之得:arctanP=x+c;即有P=tan(x+c₁);
∴y=∫tan(x+c₁)dx=∫tan(x+c₁)d(x+c₁)=-ln[cos(x+c₁)]+c₂;
(2). y³y''-1=0
解:令y'=P;则y''=dp/dx=(dp/dy)(dy/dx)=p(dp/dy);代入原式得:
yp(dp/dy)-1=0;分离变量得:pdp=dy/y;
积分之得:(1/2)p²=-1/(2y²)+(1/2)c₁; 化简得p²=-1/y²+c₁;
故有:p=dy/dx=√(c₁-1/y²)=[√(c₁y²-1)]/y;
再分离变量得:ydy/√(cy-1)=dx;
积分之得通解:x=∫ydy/√(c₁y²-1)=[1/(2c₁)]∫d(c₁y²-1)/√(c₁y²-1)=(1/c₁)√(c₁y²-1)+c₂;