展开全部
1. 分子分母同除以 x^15, 得
lim<x→∞> (1-3/x)^10 (4x+1/x)^5/(1/x-2)^15 = ∞
2. 原式 = lim<x→0>x(2x)/(3x^2) = 2/3
3. 原式 = lim<x→∞>ln[(1-5/x^2)^(-x^2/5)]^[(5x^2-3)/(x^2/5)]
= lim<x→∞>lne^[(5x^2-3)/(x^2/5)] = lim<x→∞>(5x^2-3)/(x^2/5) = 25
4. 原式 = lim<x→∞>xln(arccotx) = ∞
5. f' = 1/√(1-x^2), f'' = (-1/2)(1-x^2)^(-3/2)(-2x) = x/(1-x^2)^(3/2)
lim<x→∞> (1-3/x)^10 (4x+1/x)^5/(1/x-2)^15 = ∞
2. 原式 = lim<x→0>x(2x)/(3x^2) = 2/3
3. 原式 = lim<x→∞>ln[(1-5/x^2)^(-x^2/5)]^[(5x^2-3)/(x^2/5)]
= lim<x→∞>lne^[(5x^2-3)/(x^2/5)] = lim<x→∞>(5x^2-3)/(x^2/5) = 25
4. 原式 = lim<x→∞>xln(arccotx) = ∞
5. f' = 1/√(1-x^2), f'' = (-1/2)(1-x^2)^(-3/2)(-2x) = x/(1-x^2)^(3/2)
追问
很感谢您,但是很之前我已经采纳了别人,呜呜,谢谢您
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询