计算题,。
1个回答
展开全部
在等式(k+1)³-k³=3k²+3k+1中
依次取k=1, 2, 3, …, n,得
2³-1³=3·1²+3·1+1,
3³-2³=3·2²+3·2+1,
4³-3³=3·3²+3·3+1,
… … … … ,
(n+1)³-n³=3n²+3n+1,
上面n个等式相加得
(n+1)³-1³
=3(1²+2²+…+n²)+3(1+2+…+n)+n
=3(1²+2²+…+n²)+3n(n+1)/2+n,
所以
1²+2²+…+n²
=[(n+1)³-1³-3n(n+1)/2-n]/3
=[n³+3n²+3n-(3n²+3n)/2-n]/3
=[2n³+6n²+6n-(3n²+3n)-2n]/6
=[2n³+3n²+n]/6
=n(2n²+3n+1)/6
=n(n+1)(2n+1)/6.
依次取k=1, 2, 3, …, n,得
2³-1³=3·1²+3·1+1,
3³-2³=3·2²+3·2+1,
4³-3³=3·3²+3·3+1,
… … … … ,
(n+1)³-n³=3n²+3n+1,
上面n个等式相加得
(n+1)³-1³
=3(1²+2²+…+n²)+3(1+2+…+n)+n
=3(1²+2²+…+n²)+3n(n+1)/2+n,
所以
1²+2²+…+n²
=[(n+1)³-1³-3n(n+1)/2-n]/3
=[n³+3n²+3n-(3n²+3n)/2-n]/3
=[2n³+6n²+6n-(3n²+3n)-2n]/6
=[2n³+3n²+n]/6
=n(2n²+3n+1)/6
=n(n+1)(2n+1)/6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询