高中物理有哪些重要公式
6个回答
展开全部
十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
展开全部
十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如果你试图通过记住重要的公式,来搞定高中物理的学习,注定会失望的。
因为,物理公式不是用来背的,更不可能记住公式了,题目就会做、成绩就能提高。
你更应该关注的是:高中物理有哪些重要的概念、基本物理过程、基本物理模型、基本物理规律(定理、定律、原理),这些规律的运用有哪些条件,等等。
如果你连一些基本而重要的物理概念、物理规律如何用文字来表达、如何用语言来阐述都做不好,深刻理解这些内容自然就是空话,学好物理就是奢望。
学好高中物理,先从梳理概念、模型、规律入手,这些东西你都真正掌握了,遇到具体物理问题,就能迅速的建立起模型,一眼看穿物理过程中起到支配作用的物理规律,公式提起笔自然而然就能写出来,顺利完成运算得出正确结果。
否则,公式是背下来了,可是公式代表的物理过程和规律却一知半解稀里糊涂,遇到实际问题还是不会分析,更谈不上准确合理的运用公式。
因为,物理公式不是用来背的,更不可能记住公式了,题目就会做、成绩就能提高。
你更应该关注的是:高中物理有哪些重要的概念、基本物理过程、基本物理模型、基本物理规律(定理、定律、原理),这些规律的运用有哪些条件,等等。
如果你连一些基本而重要的物理概念、物理规律如何用文字来表达、如何用语言来阐述都做不好,深刻理解这些内容自然就是空话,学好物理就是奢望。
学好高中物理,先从梳理概念、模型、规律入手,这些东西你都真正掌握了,遇到具体物理问题,就能迅速的建立起模型,一眼看穿物理过程中起到支配作用的物理规律,公式提起笔自然而然就能写出来,顺利完成运算得出正确结果。
否则,公式是背下来了,可是公式代表的物理过程和规律却一知半解稀里糊涂,遇到实际问题还是不会分析,更谈不上准确合理的运用公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
5.匀变速直线运动的基本规律
(1)速度公式:v=v0+at.
(2)位移公式:x=v0t+at2.
(3)位移速度关系式:v2-v=2ax.
(4)平均速度公式:=(适用于一切运动)
==(适用于匀变速直线运动)
6.连续相等的相邻时间间隔T内的位移差相等.(实验题求纸带加速度常用公式)
即x2-x1=x3-x2=…=xn-xn-1.
7.自由落体运动
(1)条件:物体只受重力,从静止开始下落.
(2)基本规律
①速度公式:v=gt.
②位移公式:h=gt2.
③速度位移关系式:v2=2gh.
8.弹簧弹力:f=k△x
9.滑动摩擦力:f=μFN (注意:静摩擦力不适用,但可以用来计算最大静摩擦力)
10.斜面模型:
G1=Gsinθ,G2=Gcosθ,FN= G2=Gcosθ
11. 牛顿第二定律
公式:F合=ma. 只适用于宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题
注意:力和加速度同时产生同时消失,方向相同
12. 动力学两类基本问题(整体感,归根到底是一类问题)计算题必考一道
(1)由受力情况判断物体的运动状态:处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.
(2)由运动情况判断受力情况:处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.
13. 超重、失重和完全失重比较(秤的原理)
超重现象
失重现象
完全失重
概念
物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象
物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象
物体对支持物的压力(或对悬挂物的拉力)等于零的现象
产生条件
物体的加速度方向向上
物体的加速度方向向下
物体的加速度方向向下,大小a=g
列原理式
F-mg=ma
F=m(g+a)
mg-F=ma
F=m(g-a)
mg-F=mg
F=0
运动状态
加速上升、减速下降
加速下降、减速上升
无阻力的抛体运动情况;绕地球匀速圆周运动的卫星
14.平抛运动
(1) 位移:
(2)速度:,,,
(3)飞行时间:,t与物体下落高度h有关,与初速度v0无关
(4)水平运动距离:由v0和h共同决定
(5)落地速度:,v由v0和vy共同决定
(1)速度公式:v=v0+at.
(2)位移公式:x=v0t+at2.
(3)位移速度关系式:v2-v=2ax.
(4)平均速度公式:=(适用于一切运动)
==(适用于匀变速直线运动)
6.连续相等的相邻时间间隔T内的位移差相等.(实验题求纸带加速度常用公式)
即x2-x1=x3-x2=…=xn-xn-1.
7.自由落体运动
(1)条件:物体只受重力,从静止开始下落.
(2)基本规律
①速度公式:v=gt.
②位移公式:h=gt2.
③速度位移关系式:v2=2gh.
8.弹簧弹力:f=k△x
9.滑动摩擦力:f=μFN (注意:静摩擦力不适用,但可以用来计算最大静摩擦力)
10.斜面模型:
G1=Gsinθ,G2=Gcosθ,FN= G2=Gcosθ
11. 牛顿第二定律
公式:F合=ma. 只适用于宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题
注意:力和加速度同时产生同时消失,方向相同
12. 动力学两类基本问题(整体感,归根到底是一类问题)计算题必考一道
(1)由受力情况判断物体的运动状态:处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.
(2)由运动情况判断受力情况:处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.
13. 超重、失重和完全失重比较(秤的原理)
超重现象
失重现象
完全失重
概念
物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象
物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象
物体对支持物的压力(或对悬挂物的拉力)等于零的现象
产生条件
物体的加速度方向向上
物体的加速度方向向下
物体的加速度方向向下,大小a=g
列原理式
F-mg=ma
F=m(g+a)
mg-F=ma
F=m(g-a)
mg-F=mg
F=0
运动状态
加速上升、减速下降
加速下降、减速上升
无阻力的抛体运动情况;绕地球匀速圆周运动的卫星
14.平抛运动
(1) 位移:
(2)速度:,,,
(3)飞行时间:,t与物体下落高度h有关,与初速度v0无关
(4)水平运动距离:由v0和h共同决定
(5)落地速度:,v由v0和vy共同决定
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询