在三角形ABC中,已知(a+b)/a= sinB/(sinB -sinA),且cos(A-B)+co
展开全部
因为(a+b)/a=sinb/(sinb-sina),所以(a+b)/a=b/(b-a),
∴ab=b^2-a^2,-------(1),
∵cos(a-b)+cosc=1-cos2c,
∴cos(a-b)-cos(a+b)=1-cos2c
∴2sinasinb=2(sinc)^2,
∴ab=c^2--------(2),
由(1)(2)两式得:a^2+c^2=b^2,
∴△abc是直角三角形。
∵(a+c)^2=a^2+c^2+2ac<=a^2+c^2+a^2+c^2=2b^2,
∴(a+c)/b<=根号2,
又因为两边之和大于第三边,即a+c>b,
∴
1<(a+c)/b<=根号2
∴ab=b^2-a^2,-------(1),
∵cos(a-b)+cosc=1-cos2c,
∴cos(a-b)-cos(a+b)=1-cos2c
∴2sinasinb=2(sinc)^2,
∴ab=c^2--------(2),
由(1)(2)两式得:a^2+c^2=b^2,
∴△abc是直角三角形。
∵(a+c)^2=a^2+c^2+2ac<=a^2+c^2+a^2+c^2=2b^2,
∴(a+c)/b<=根号2,
又因为两边之和大于第三边,即a+c>b,
∴
1<(a+c)/b<=根号2
展开全部
根据正弦定理,(a+b)/a=
sinB/(sinB
-sinA)
=(sinA+sinB)/sinA
∴sinA·sinB
=
(sinB+sinA)(sinB-sinA)
=
2sin[(B+A)/2]·cos[(B-A)/2]·2·cos[(B+A)/2]·sin[(B-A)]
旦常测端爻得诧全超户
=sin(B-A)·sin(B+A)
=sinC·sin(B-A)
cos(A-B)+cosC=1-cos2C
即
2sinA·sinB
=
2(sinC)^2,∴(sinC)^2
=
sinA·sinB
∴(sinC)^2
=
sinC·sin(B-A),∴cosB·sinA
=
0,∵sinA≠0,∴cosB
=
0,∴B
=π/2
∴△ABC是以B为直角的Rt△
又∵sinB/(sinB
-sinA)
=(sinA+sinB)/sinA,∴1/[1
-
sinA]
=
(1
+
sinA)/sinA
∴sinA
=
1-(sinA)^2,解得sinA
=
(√5
-
1)/2
,∴sinC
=
cosA
=
[(2√5
-
2)^(1/2)]/2
∴(a+
c)/b
=
(sinA
+
sinC)/sinB
=
sinA
+
sinC
=
(√5
-
1)/2
+
{[(2√5
-
2)^(1/2)]/2}
sinB/(sinB
-sinA)
=(sinA+sinB)/sinA
∴sinA·sinB
=
(sinB+sinA)(sinB-sinA)
=
2sin[(B+A)/2]·cos[(B-A)/2]·2·cos[(B+A)/2]·sin[(B-A)]
旦常测端爻得诧全超户
=sin(B-A)·sin(B+A)
=sinC·sin(B-A)
cos(A-B)+cosC=1-cos2C
即
2sinA·sinB
=
2(sinC)^2,∴(sinC)^2
=
sinA·sinB
∴(sinC)^2
=
sinC·sin(B-A),∴cosB·sinA
=
0,∵sinA≠0,∴cosB
=
0,∴B
=π/2
∴△ABC是以B为直角的Rt△
又∵sinB/(sinB
-sinA)
=(sinA+sinB)/sinA,∴1/[1
-
sinA]
=
(1
+
sinA)/sinA
∴sinA
=
1-(sinA)^2,解得sinA
=
(√5
-
1)/2
,∴sinC
=
cosA
=
[(2√5
-
2)^(1/2)]/2
∴(a+
c)/b
=
(sinA
+
sinC)/sinB
=
sinA
+
sinC
=
(√5
-
1)/2
+
{[(2√5
-
2)^(1/2)]/2}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询