MN是半径为1的圆的直径,A在圆O上,∠AMN=30度,B为弧AN中点,P是直径MN上一动点,求PA+PB最小值
展开全部
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'
显然B,B'点关于MN对称,所以PB=PB'
而在三角形APB'中,PA+PB'>AP'
所以:PA+PB>AP'
显然当P与P'重合时,PA+PB为最小,为AP'
连接AO,B'O
角AON=2*角AMN=60度
角B'ON=弧B'N=弧BN=(1/2)弧AN=角AMN=30度
角AOB'=角AON+角B'ON=90度
所以:AP'=(根号2)*ON=根号2
PA+PB的最小值=根号2
显然B,B'点关于MN对称,所以PB=PB'
而在三角形APB'中,PA+PB'>AP'
所以:PA+PB>AP'
显然当P与P'重合时,PA+PB为最小,为AP'
连接AO,B'O
角AON=2*角AMN=60度
角B'ON=弧B'N=弧BN=(1/2)弧AN=角AMN=30度
角AOB'=角AON+角B'ON=90度
所以:AP'=(根号2)*ON=根号2
PA+PB的最小值=根号2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询