问一道初二四边形问题
2个回答
展开全部
(1)用勾股定理得AC=√[25+(8-x)^2]
CE=√(x^2+1)
∴AC+CE=√[25+(8-x)^2]
+√(x^2+1)
(2)当AC=CE时AC+CE的值最小
即
√[25+(8-x)^2]
=√(x^2+1)
∴x=5.5
(3)当√(x^2+4)=√【(12-x)^2+9】时
有最小值
∴x=149/24
图要画吗
和上面这幅基本一样
CE=√(x^2+1)
∴AC+CE=√[25+(8-x)^2]
+√(x^2+1)
(2)当AC=CE时AC+CE的值最小
即
√[25+(8-x)^2]
=√(x^2+1)
∴x=5.5
(3)当√(x^2+4)=√【(12-x)^2+9】时
有最小值
∴x=149/24
图要画吗
和上面这幅基本一样
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询