
实变函数与泛函分析基础题目:设f(x),g(x)是定义在E上的函数,证明:
2个回答
展开全部
设 x∈左边,则 |f(x)+g(x)|>2e,假设 x∉右边, 则 |f(x)|<e |g(x)|<e 因此 |f(x)+g(x)|≤|f(x)|+|g(x)|<2e 矛盾。
因此假设不成立,即有x∈右边,因此 左边包含于右边 (因为对于任意x∈左边,能推出x∈右边,根据包含于的定义,即左边包含于右边)。
简介
实变函数论是以实变函数作为研究对象的数学分支,是数学分析的深入与推广,研究函数的表示与逼近问题以及它们的局部与整体性质。在经典分析中主要研究具有一定阶光滑性的函数。但在 19 世纪下半叶,一些问题被明确提出,期望能解答并涉及更宽泛的函数类。
问题
在这些问题中必须提到的有集合的测度,曲线长度与曲面面积,原函数与积分,积分与微分的关系,级数的逐项积分与微分,由极限过程得到的函数的性质等。
这些问题的解决对数学发展至关重要,但又非经典分析所能。直至 19 世纪末 20 世纪初,在集合论的基础上,这些问题才得以解决,同时也完成了现代实变函数论基础的建立。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询