如何证明一个数列为等差数列
2个回答
展开全部
-
-
如何证明等差数列设等差数列
an=a1+(n-1)d
最大数加最小数除以二即
[a1+a1+(n-1)d]/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=[na1+n(n-1)d/2]/n=a1+(n-1)d/2
得证
1
三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c),
b^2(c+a),
c^2(a+b)
成等差数列
等差:an-(an-1)=常数
(n≥2)
等比:an/(an-1=常数
(n≥2)
等差:an-(an-1)=d或2an=(an-
1)+(an+1),(n≥2)
等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).
2
我们推测数列{an}的通项公式为an=5n-4
-
如何证明等差数列设等差数列
an=a1+(n-1)d
最大数加最小数除以二即
[a1+a1+(n-1)d]/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=[na1+n(n-1)d/2]/n=a1+(n-1)d/2
得证
1
三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c),
b^2(c+a),
c^2(a+b)
成等差数列
等差:an-(an-1)=常数
(n≥2)
等比:an/(an-1=常数
(n≥2)
等差:an-(an-1)=d或2an=(an-
1)+(an+1),(n≥2)
等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).
2
我们推测数列{an}的通项公式为an=5n-4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询