椭圆mx2+ny2=1与直线x+y-1=0相交与A,B两点,过AB中点M与坐标原点的直线斜率为
椭圆mx2+ny2=1与直线x+y-1=0相交于A,B两点,过AB中点M与坐标原点的直线的斜率为(根号2)/2,则m/n的值为?...
椭圆mx2+ny2=1与直线x+y-1=0相交于A,B两点,过AB中点M与坐标原点的直线的斜率为(根号2)/2,则m/n的值为?
展开
2个回答
展开全部
解:设a(x1,y1)b(x2,y2)
∵mx²+ny²=1,∴m>0且n>0,∴m+n>0
联立椭圆和直线得:mx²+n(1-x)²=1,即(m+n)x²-2nx+n-1=0
则x1+x2=2n/(m+n),则y1+y2=(1-x1)+(1-x2)=2-(x1+x2)=2m/(m+n)
m的坐标为((x1+x2)/2,(y1+y2)/2),即m(n/(m+n),m/(m+n))
则om的斜率为[m/(m+n)]/[n/(m+n)]=m/n=√2/2
即m/n=√2/2
∵mx²+ny²=1,∴m>0且n>0,∴m+n>0
联立椭圆和直线得:mx²+n(1-x)²=1,即(m+n)x²-2nx+n-1=0
则x1+x2=2n/(m+n),则y1+y2=(1-x1)+(1-x2)=2-(x1+x2)=2m/(m+n)
m的坐标为((x1+x2)/2,(y1+y2)/2),即m(n/(m+n),m/(m+n))
则om的斜率为[m/(m+n)]/[n/(m+n)]=m/n=√2/2
即m/n=√2/2
展开全部
mx^2+ny^2=1代入mx2+ny2=1得:(m+n)x^2-2nx+n-1=0
设A、B的坐标为(x1,y1),(x2,y2),则有:
x1+x2=2n/(m+n)
y1+y2=1-x1+1-x2=2-(x1+x2)=2m/(m+n)
M的坐标为:(X,Y),则X= (x1+x2)/2=n/(m+n),Y=(y1+y2)/2=m/(m+n)
0M的斜率k=Y/X=[m/(m+n)]/[n/(m+n)]=m/n=√2/2
设A、B的坐标为(x1,y1),(x2,y2),则有:
x1+x2=2n/(m+n)
y1+y2=1-x1+1-x2=2-(x1+x2)=2m/(m+n)
M的坐标为:(X,Y),则X= (x1+x2)/2=n/(m+n),Y=(y1+y2)/2=m/(m+n)
0M的斜率k=Y/X=[m/(m+n)]/[n/(m+n)]=m/n=√2/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询