2个回答
展开全部
x->0
cos4x = 1 - (1/2)(4x)^2 + (1/24)(4x)^4 +o(x^4)
1-cos4x = (1/2)(4x)^2 - (1/24)(4x)^4 +o(x^4)
(1/8)(1-cos4x) = x^2 - (4/3)x^4 +o(x^4)
x^2 -(1/8)(1-cos4x) = (4/3)x^4 +o(x^4)
lim(x->0) [ 1/(sinx)^2 - (cosx)^2/x^2 ]
=lim(x->0) [ x^2- (sinx)^2.(cosx)^2 ]/[(sinx)^2.x^2 ]
=lim(x->0) [ x^2- (sinx)^2.(cosx)^2 ]/ x^4
=lim(x->0) [ x^2- (1/4)(sin2x)^2 ]/ x^4
=lim(x->0) [ x^2- (1/8)(1 - cos4x) ]/ x^4
=lim(x->0) (4/3)x^4/ x^4
=4/3
cos4x = 1 - (1/2)(4x)^2 + (1/24)(4x)^4 +o(x^4)
1-cos4x = (1/2)(4x)^2 - (1/24)(4x)^4 +o(x^4)
(1/8)(1-cos4x) = x^2 - (4/3)x^4 +o(x^4)
x^2 -(1/8)(1-cos4x) = (4/3)x^4 +o(x^4)
lim(x->0) [ 1/(sinx)^2 - (cosx)^2/x^2 ]
=lim(x->0) [ x^2- (sinx)^2.(cosx)^2 ]/[(sinx)^2.x^2 ]
=lim(x->0) [ x^2- (sinx)^2.(cosx)^2 ]/ x^4
=lim(x->0) [ x^2- (1/4)(sin2x)^2 ]/ x^4
=lim(x->0) [ x^2- (1/8)(1 - cos4x) ]/ x^4
=lim(x->0) (4/3)x^4/ x^4
=4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |