已知a>0,b>0,c>0,a+b+c=3,证明a²+b²+c²≥3

已知a>0,b>0,c>0,且a+b+c=1已知a>0,b>0,c>0,且a+b+c=1,求证:a^2+b^2+c^2≥1/3... 已知a>0,b>0,c>0,且a+b+c=1 已知a>0,b>0,c>0,且a+b+c=1,求证:a^2+b^2+c^2≥1/3 展开
 我来答
井芹邴安荷
2020-06-23 · TA获得超过1066个赞
知道小有建树答主
回答量:1933
采纳率:100%
帮助的人:9.4万
展开全部
因为:(a-b)²≥0
展开得:a²+b²≥2ab
同理:a²+c²≥2ac;b²+c²≥2bc
三式相加得:2(a²+b²+c²)≥2(ab+ac+bc)
则:a²+b²+c²≥ab+ac+bc
a+b+c=1
两边平方得:
a²+b²+c²+2ab+2bc+2ac=1
a²+b²+c²=1-2ab+2bc+2ac≥ab+ac+bc
3(ab+ac+bc)≥1
ab+ac+bc≥1/3
则:a²+b²+c²≥ab+ac+bc≥1/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式