∫xe^x/√(1+e^x)dx
展开全部
设t = √(1 + e^x),x = ln(t² - 1),dx = 2t/(t² - 1) dt
∫ xe^x/√(1 + e^x) dx
= ∫ [ln(t² - 1) * (t² - 1)/t] * 2t/(t² - 1) dt
= 2∫ ln(t² - 1) dt
= 2t ln(t² - 1) - 2∫ t d[ln(t² - 1)]
= 2t ln(t² - 1) - 2∫ t * 2t/(t² - 1) dt
= 2t ln(t² - 1) - 4∫ [(t² - 1) + 1]/(t² - 1) dt
= 2t ln(t² - 1) - 4∫ dt - 4∫ 1/(t² - 1) dt
= 2t ln(t² - 1) - 4t - 4(1/2)∫ [1/(t - 1) - 1/(t + 1)] dt
= 2t ln(t² - 1) - 4t - 2ln|t - 1| + 2ln|t + 1| + C
= 2x√(1 + e^x) - 4√(1 + e^x) + 2ln| [√(1 + e^x) + 1]/[√(1 + e^x) - 1] | + C
∫ xe^x/√(1 + e^x) dx
= ∫ [ln(t² - 1) * (t² - 1)/t] * 2t/(t² - 1) dt
= 2∫ ln(t² - 1) dt
= 2t ln(t² - 1) - 2∫ t d[ln(t² - 1)]
= 2t ln(t² - 1) - 2∫ t * 2t/(t² - 1) dt
= 2t ln(t² - 1) - 4∫ [(t² - 1) + 1]/(t² - 1) dt
= 2t ln(t² - 1) - 4∫ dt - 4∫ 1/(t² - 1) dt
= 2t ln(t² - 1) - 4t - 4(1/2)∫ [1/(t - 1) - 1/(t + 1)] dt
= 2t ln(t² - 1) - 4t - 2ln|t - 1| + 2ln|t + 1| + C
= 2x√(1 + e^x) - 4√(1 + e^x) + 2ln| [√(1 + e^x) + 1]/[√(1 + e^x) - 1] | + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询