f(x)=x^2 ㏑(1+x)在x=0处的n阶导数
展开全部
方法1:
根据:
(UV)的n阶导数
=
U'(n)
V
+
U'(n-1)
V'
+
C(n,1)
U'(n-2)
V''
+C(n,2)
........
+U
V'(n)
其中
x²
=
x²
Ln(1
+
x)
'(n)
=
(-
1)^)(n-1)
(n-1)!
/
(1
+
x)^n
x²
’
=
2x
Ln(1
+
x)
'
(n-1)
=
(-
1)^(n-2)
(n-2)!
/
(1
+
x)^(n-1)
x²
''
=
2
Ln(1
+
x)
'
(n-2)
=
(-
1)^(n-3)
*(n-3)!
/
(1
+
x)^(n-2)
--其实只要计算这个
就可以了,
因为
x
=
0
时,
x²
’
=
2x
=0
x²
'''
=
0
Ln(1
+
x)
'
(n-3)=
.....
fn(0)
=
n(n-1)/2
*
2
*
(-
1)^(n-3)
(n-3)!
/
(1
+
x)^(n-2)
=
(-
1)^(n-3)
*
n(n-1)(n-3)!
=
(-
1)^(n-1)
*
n!
/
(n
-
2)
根据:
(UV)的n阶导数
=
U'(n)
V
+
U'(n-1)
V'
+
C(n,1)
U'(n-2)
V''
+C(n,2)
........
+U
V'(n)
其中
x²
=
x²
Ln(1
+
x)
'(n)
=
(-
1)^)(n-1)
(n-1)!
/
(1
+
x)^n
x²
’
=
2x
Ln(1
+
x)
'
(n-1)
=
(-
1)^(n-2)
(n-2)!
/
(1
+
x)^(n-1)
x²
''
=
2
Ln(1
+
x)
'
(n-2)
=
(-
1)^(n-3)
*(n-3)!
/
(1
+
x)^(n-2)
--其实只要计算这个
就可以了,
因为
x
=
0
时,
x²
’
=
2x
=0
x²
'''
=
0
Ln(1
+
x)
'
(n-3)=
.....
fn(0)
=
n(n-1)/2
*
2
*
(-
1)^(n-3)
(n-3)!
/
(1
+
x)^(n-2)
=
(-
1)^(n-3)
*
n(n-1)(n-3)!
=
(-
1)^(n-1)
*
n!
/
(n
-
2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询