轮换对称性是什么?算二三重积分时怎么用呢?
1个回答
展开全部
积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
轮换对称性原理1:一个只含字母x,y,z的题目,把所有的x,y,z同时换为u,v,w,所求得数相同。
轮换对称性原理2:一个只含字母x,y,z的题目,把所有的x,y,z却换为y,z,x,所求得数相同。
相关信息
对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0, 也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS。
如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询