问一个比较基础的问题,线性代数中如何求空间的基?谢了各位,急
例:对于矩阵13-2121323456求其行空间的基、列空间的基、零空间的基(详细解答过程,越快越好,有重赏)...
例:对于矩阵1 3 -2 1
2 1 3 2
3 4 5 6
求其行空间的基、列空间的基、零空间的基(详细解答过程,越快越好,有重赏) 展开
2 1 3 2
3 4 5 6
求其行空间的基、列空间的基、零空间的基(详细解答过程,越快越好,有重赏) 展开
1个回答
展开全部
最简单最快速的方法是利用欧氏空间的一个定理:如果空间的维数为n,则空间内任意n个线性无关的向量可以做该空间的基底。矩阵的行秩等于列秩。
来看这道题:首先初等行变换矩阵变为阶梯型,发现该矩阵的秩为3。那么,这个矩阵中任意三个线性无关的行向量就是该矩阵行空间的基底,这个矩阵只有3个行向量,那这三个行向量就是基底。
然后看列空间,第一列与第四列明显线性无关。记这两条列向量为a1,a4,为了验证a2,a3中哪条向量与这两条线性无关,做出假设,a2与a1,a4线性相关,则存在数x,y,使得xa2+ya3=a2。得到x+y=3,2x+2y=1,3x+6y=4,光看前两个式子就知道这样的x,y不存在。所以a1,a2,a4线性无关,所以a1,a2,a4就是列空间的基底。
这个方法是极为快速简洁的方法,总比换底公式快的多的多。
零空间的基实际上笨法子就是最好的办法:初等行变换得如下矩阵
1 3 -2 1
0 -5 7 0
0 0 16 4
令x4=1,解得x3=-1/4,x2=-7/20,x1=-9/20
(-9/20 -7/20 -1/4 1)就是零空间的基底。实际上求零解空间的基底就是求Ax=0的基础解系。
来看这道题:首先初等行变换矩阵变为阶梯型,发现该矩阵的秩为3。那么,这个矩阵中任意三个线性无关的行向量就是该矩阵行空间的基底,这个矩阵只有3个行向量,那这三个行向量就是基底。
然后看列空间,第一列与第四列明显线性无关。记这两条列向量为a1,a4,为了验证a2,a3中哪条向量与这两条线性无关,做出假设,a2与a1,a4线性相关,则存在数x,y,使得xa2+ya3=a2。得到x+y=3,2x+2y=1,3x+6y=4,光看前两个式子就知道这样的x,y不存在。所以a1,a2,a4线性无关,所以a1,a2,a4就是列空间的基底。
这个方法是极为快速简洁的方法,总比换底公式快的多的多。
零空间的基实际上笨法子就是最好的办法:初等行变换得如下矩阵
1 3 -2 1
0 -5 7 0
0 0 16 4
令x4=1,解得x3=-1/4,x2=-7/20,x1=-9/20
(-9/20 -7/20 -1/4 1)就是零空间的基底。实际上求零解空间的基底就是求Ax=0的基础解系。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |