设ABC是锐角三角形,a.b.c分别是内角A.B.C所对边长,并且sin^2A=sin(60+B)sin(60-B)+sin^2B。求角A的值

笑年1977
2010-11-30 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
sin^2A=sin(60+B)sin(60-B)+sin^2B
sin^2A=-1/2(cos(60+B+60-B)-cos(60+B-60+B)+sin^2B
sin^2A=-1/2(-1/2-cos2B)+1/2(1-cos2B)
1/2(1-cos2A)=-1/2(-1/2-cos2B)+1/2(1-cos2B)
1-cos2A=1/2+cos2B+1-cos2B
cos2A=-1/2
2A=120度
A=60度
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式