求导和求原函数的区别
1个回答
展开全部
求导和求原函数的区别:含义不同,计算不同。
一、含义不同:原函数的导数是现在的函数。cosx的原函数是sinx+C,C是常数,cosx的导数是-sinx。
二、计算不同:对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。
原函数存在定理
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |