若X=√19-8√3 则分式X^4-6X^3-2X^2+18X+23\X^2-8X+15 的值
1个回答
展开全部
x=根号下19-8倍根号3
=根号下[4^2+(根号3)^2-2*4*根号3]
=根号(4-根号3)^2
=4-根号3
x-4=-根号3
(x-4)^2=3
x^2-8x+13=0
x^2-8x+13=0,
所以x^2-8x+15=2;
x^4-6x^3-2x^2+18x+23
=x^2(x^2-8x+13)+2x^3-15x^2+18x+23
=2x(x^2-8x+13)+x^2-8x+23
=x^2-8x+23
=x^2-8x+13+10=10
所以:(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)=10/2=5
=根号下[4^2+(根号3)^2-2*4*根号3]
=根号(4-根号3)^2
=4-根号3
x-4=-根号3
(x-4)^2=3
x^2-8x+13=0
x^2-8x+13=0,
所以x^2-8x+15=2;
x^4-6x^3-2x^2+18x+23
=x^2(x^2-8x+13)+2x^3-15x^2+18x+23
=2x(x^2-8x+13)+x^2-8x+23
=x^2-8x+23
=x^2-8x+13+10=10
所以:(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)=10/2=5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询