设A、B均为4阶方阵,A*,B*为A,B的伴随矩阵,r(A)=4,r(B)=3 ,则 r[(AB)*]=

 我来答
名成教育17
2022-06-21 · TA获得超过5500个赞
知道小有建树答主
回答量:268
采纳率:0%
帮助的人:72.2万
展开全部
首先由题意知,A为满秩矩阵,B是不可逆矩阵,由矩阵秩的性质可知r(A*)=4,r(B*)=1,又因为(AB)*=B*A*,那么显然有r[(AB)*]=1.
注意本题用到结论:
若A为n阶可逆矩阵,则有:
(1)r(A*)=n,当r(A)=n时
(2)r(A*)=1,当r(A)=n-1时
(3)r(A*)=0,当r(A)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式