矩阵理论

 我来答
黑科技1718
2022-07-20 · TA获得超过5886个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.4万
展开全部
与 全部线性组合构成的向量集合称为“张成的空间” (span)

线性无关:对于a和b取所有值都有

基的严格定义:向量空间的一组基是张成该空间的一个线性无关的向量集

线性变换是操纵空间的一种手段,它保持网格线平行且等距分布,并且保持原点不动。这种变换可以用把变换后的基做为列向量所构成的矩阵来表示。

将矩阵相乘看作是对空间进行复合线性变换,即两个变换相继作用 。

秩代表变换后空间的维数

矩阵的列张成的空间就是列空间,秩是列空间的维数

列空间让我们清楚什么时候解存在,零空间有助于我们理解所有可能的解的集合是什么样的

变换后落在原点的向量的集合被称为矩阵的“零空间”或“核”

点积: 投影

点积的投影可以看成一种线性变换

叉积:

基坐标的转换

M代表我所见变换,外侧两个矩阵代表着转移作用,也就是视角上的转换。矩阵乘积仍然代表着同一个变换,只不过是从其他人的角度来看的。

特征值与特征向量

对角矩阵的解读:所有基向量都是特征向量,矩阵的对角元是它们所属的特征值

之所以把矩阵变换为对角矩阵,是因为在该矩阵的特征基上,只进行尺度变换,可以减少运算量。

行列式告诉你的是一个变换对面积的缩放比例,特征向量则是在变换中留在它所张成的空间中的向量。

线性变换:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式