f(x+a)泰勒公式

 我来答
倚伎财69

2021-12-29 · TA获得超过104个赞
知道小有建树答主
回答量:629
采纳率:100%
帮助的人:24.2万
展开全部
泰勒公式是将任意函数分解为以下这种简单形式的一种方法

为什么可以这么做?主要是由导数的几何意义而来。

众所周知,导数的物理意义是『变化率』。
譬如二维曲线的一阶导数表征斜率,斜率即 y 随 x 变化的变化率;
譬如二维曲线的二阶导数表征曲度,曲度即一阶导 y' 随 x 变化的变化率;
由此递推,高阶导数永远表征的是其次一阶导数随 x 的变化率,表征在函数图像上就呈现为函数该某点周围曲线形状的变化趋势。越高阶的导数,表征的就是该点处越精细的变化趋势。

我们可以这么思考,设需要分解的原函数为 f(x) ,泰勒分解后的泰勒级数为g(x)
当f(x) 与 g(x) 在某点处的各阶导数都相同时,那么f(x) 与 g(x) 在该点周围的图像也就完全一致,如果这种相同能够保持到无穷阶导数,那么这个『周围』的相似范围也就扩大到无穷大,即f(x)与g(x)在数轴上所有位置都变为相同,即f(x) = g(x)。
所以泰勒公式的关键,也就是f(x) 与 g(x) 在某点处各阶导数值的对应相等。即:



一般我们将 x=0 代入,就可以求得对应函数的泰勒级数常数项的值了。
总体而言,泰勒公式就是利用各阶导数的近似,来获得整体函数的近似。在数学计算上,就表现为通过计算f(x)的各阶导数,从而获得对应项泰勒常数的过程。
泰科博思
2024-12-27 广告
CASTEP是一款基于第一性原理计算方法的材料模拟软件,其优势包括:1.高精度。CASTEP使用密度泛函理论(DFT)进行第一性原理计算。这种基于波函数的方法不依赖于实验数据,可以获得非常高的准确性。2.广泛适用性。CASTEP适用于多种材... 点击进入详情页
本回答由泰科博思提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式