
设隐函数y=y(x)由方程ycesx+sin(x-y)=0所确定,求dy
展开全部
ycosx+sin(x-y)=0
d(ycosx+sin(x-y))=0
ydcosx + cosxdy + cos(x-y)d(x-y) = 0
y(-sinx dx) + cosxdy + cos(x-y)(dx-dy) = 0
[cosx -cos(x-y)]dy = [ysinx-cos(x-y)] dx
dy = { [ysinx-cos(x-y)]/[cosx -cos(x-y)] } dx
d(ycosx+sin(x-y))=0
ydcosx + cosxdy + cos(x-y)d(x-y) = 0
y(-sinx dx) + cosxdy + cos(x-y)(dx-dy) = 0
[cosx -cos(x-y)]dy = [ysinx-cos(x-y)] dx
dy = { [ysinx-cos(x-y)]/[cosx -cos(x-y)] } dx
展开全部
cesx??应该是cosx吧……
ycosx+sin(x-y)=0,两边对x求导得到:
y'cosx+y·(-sinx)+cos(x-y)·(1-y')=0
==> y'cosx-ysinx+cos(x-y)-cos(x-y)·y'=0
==> [cosx-cos(x-y)]·y'=ysinx-cos(x-y)
==> y'=[ysinx-cos(x-y)]/[cosx-cos(x-y)]
则,dy=[……]dx
ycosx+sin(x-y)=0,两边对x求导得到:
y'cosx+y·(-sinx)+cos(x-y)·(1-y')=0
==> y'cosx-ysinx+cos(x-y)-cos(x-y)·y'=0
==> [cosx-cos(x-y)]·y'=ysinx-cos(x-y)
==> y'=[ysinx-cos(x-y)]/[cosx-cos(x-y)]
则,dy=[……]dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询